

Dice in Perl

Bob Mathews

Dice?

There are a lot of different types of dice.

But I found plenty of weird things to do with ordinary
cube-shaped six-sided dice.

Generating random dice rolls is easy.

print " ", 1 + int rand 6 for 1 .. 20;

 2 4 5 3 4 6 1 3 6 5 1 6 3 6 3 1 2 2 6 2

So I'm not going to talk about that.

What, Then?

I'm going to show how
to determine the
probability of rolling
various outcomes.

This information can
be useful for strategy
in dice-based games.

And there are some generally useful programming
techniques involved.

Like displaying the results in a graph.

Graphics::GnuplotIF

There are a lot of plotting
modules on CPAN, but
GnuplotIF seems to be the
easiest way to display a
plot on-screen.

Rolling one die produces
a uniform distribution.
Pretty boring.

use Graphics::GnuplotIF;
my $plot = Graphics::GnuplotIF->new(
 style => 'boxes', yrange => [0, 0.2], persist => 1);
$plot->gnuplot_hardcopy('plot.png', 'pngcairo');
$plot->gnuplot_plot_xy([1..6], [(1/6)x6]);

Pair of Dice

In many games, you roll
two dice together.

We can simply loop through
all the possible dice rolls.

my @count = (0) x 13;

for my $d1 (1 .. 6) {
 for my $d2 (1 .. 6) {
 $count[$d1 + $d2]++;
 }
}

my @pmf = map { $_ / (6*6) } @count;

my $plot = Graphics::GnuplotIF->new(
 style => 'boxes', xrange => [0, 14], persist => 1);
$plot->gnuplot_plot_y(\@pmf);

← 7 is most likely

←
 S

na
ke

 E
ye

s

←
 B

ox
ca

rs

What Good Is That?

You can answer many questions from the
probability mass function (PMF).

Probability of rolling over 7:
$p_over_7 += $pmf[$_] for 8 .. $#pdf;

Probability of rolling even:
for (my $i = 0; $i <= $#pmf; $i += 2) {
 $p_even += $pmf[$i];
}

Average:
$avg += $_ * $pmf[$_] for 0 .. $#pmf;

Sicherman Dice

What's up with these dice?

my @sich1 = (1, 2, 2, 3, 3, 4);
my @sich2 = (1, 3, 4, 5, 6, 8);
for my $d1 (@sich1) {
 for my $d2 (@sich2) {
 $count[$d1 + $d2]++;
 }
}

Surprisingly, they produce the
same probability distribution as
an ordinary pair of dice.

More Dice

Of course, you might need to roll
more than two. We can just add
another nested loop...

my @count = (0) x 19;
for my $d1 (1 .. 6) {
 for my $d2 (1 .. 6) {
 for my $d3 (1 .. 6) {
 $count[$d1 + $d2 + $d3]++;
 }
 }
}

But that's dumb and boring, and what if you don't know the
number of dice to roll ahead of time?

Recursive Dice Rolling
The recursive function roll calls
the anon sub repeatedly with
different arrays of dice.

use List::Util qw(sum);
roll(3, sub {
 $count[&sum]++;
});

sub roll {
 my ($num, $sub, @dice) = @_;
 if (@dice < $num) {
 roll($num, $sub, @dice, $_) for 1 .. 6;
 }
 else {
 $sub->(@dice);
 }
}

Perl trick: &sum calls the sum function with the current @_ array.

Recursive Call Tree

roll(2, $sub)

roll(2, $sub, 1, 1) → $sub->(1, 1)
roll(2, $sub, 1, 2) → $sub->(1, 2)
roll(2, $sub, 1, 3) → $sub->(1, 3)
roll(2, $sub, 1, 4) → $sub->(1, 4)
roll(2, $sub, 1, 5) → $sub->(1, 5)
roll(2, $sub, 1, 6) → $sub->(1, 6)

roll(2, $sub, 1)

roll(2, $sub, 2, 1) → $sub->(2, 1)
roll(2, $sub, 2, 2) → $sub->(2, 2)
roll(2, $sub, 2, 3) → $sub->(2, 3)
roll(2, $sub, 2, 4) → $sub->(2, 4)
roll(2, $sub, 2, 5) → $sub->(2, 5)
roll(2, $sub, 2, 6) → $sub->(2, 6)

roll(2, $sub, 3, 1) → $sub->(3, 1)
roll(2, $sub, 3, 2) → $sub->(3, 2)
roll(2, $sub, 3, 3) → $sub->(3, 3)
roll(2, $sub, 3, 4) → $sub->(3, 4)
roll(2, $sub, 3, 5) → $sub->(3, 5)
roll(2, $sub, 3, 6) → $sub->(3, 6)

roll(2, $sub, 2) roll(2, $sub, 3)

...

Too Slow

Dice Time

3 0.00025 sec

4 0.00173 sec

5 0.00932 sec

6 0.0638 sec

7 0.372 sec

8 2.36 sec

9 15.3 sec

10 94.3 sec

11 ~ 10 min?

12 ~ 1 hour?

20 ~ 200 years?

This method takes an
exponentially increasing
amount of time, so it's not
practical for large
numbers of dice.

Yes, some games use
a lot of dice.

Part 2:
Convolutional Methods

What Went Wrong?

Brute-force looping spent a lot of time working
through the individual dice values, but we only
care about the sum.

With 10 dice, there are over 60 million different
rolls, but the sum can only go up to 60.

Illustrations
stolen from
Gunnerkrigg
Court by
Tom Siddell

What Else Can We Do?

¼×(d4+1)

¼×(d4+2)

¼×(d4+3)

¼×(d4+4)

2d4

Work with the PMFs directly. Using 4-sided dice to keep
the diagram simple, start with four shifted copies of the
boring one-die PMF. They add up to the 2d4 PMF.

Then What?

¼×(2d4+1)

¼×(2d4+2)

¼×(2d4+3)

¼×(2d4+4)

3d4

Add up four copies of the 2d4 PMF to get the 3d4 PMF.
Repeat as needed.

Convolution Algorithm

This operation is called “convolution.”

sub convol {
 my ($in1, $in2) = @_;
 my @out = (0) x ($#$in1 + $#$in2 + 1);
 for my $i (0 .. $#$in1) {
 for my $j (0 .. $#$in2) {
 $out[$i + $j] += $in1->[$i] * $in2->[$j];
 }
 }
 return \@out;
}

It is useful in many situations, such as digital audio filtering
and blur and sharpen image filters.

Six Dice
Next, set up the PMF for one die and run it through the
convolution a bunch of times.

my $d6 = [0, (1/6) x 6];
my $tot = $d6;
$tot = convol($d6, $tot) for 2 .. 6;

Hero System

In Hero System game mechanics,
BODY damage is determined as
follows: rolling a 1 does no damage,
2 to 5 does 1, and rolling 6 does 2.

The convolution algorithm can
handle this just fine, by starting
off with an appropriate input.

my $d6 = [1/6, 4/6, 1/6];
my $tot = $d6;
$tot = convol($d6, $tot) for 2 .. 6;

Multiple Data Sets On One Plot

my $plot = Graphics::GnuplotIF->new(persist => 1,
 style => 'boxes', xrange => [-1, $#$prod],
 plot_titles => ['1d6', '6d6']);
$plot->gnuplot_plot_many([0 .. $#$d], $d,
 [0 .. $#$prod], $prod);

In the game, if you are
trying to break down a
door that has 4 DEFense,
you'll need to roll above 4
on the green boxes.
Otherwise, you'll just
hurt your shoulder.

Shadowrun

The dark future game
Shadowrun has an
interesting dice-rolling
mechanic.

Rolling 1 to 4 scores nothing, and 5 or 6 is a “hit.”
If the “rule of six” applies, a 6 means you also get
to roll another die.

This keeps going if you roll another 6, so there's
theoretically no limit to the number of hits you can
roll.

Shadowrun Dice

We can handle this by setting a $max
number of hits and lumping everything
above that together.
sub sr_d6 {
 my ($max) = @_;
 my @out = (0) x ($max + 1);
 my $p = 1;
 my $i = 0;
 while ($i < $max) {
 $p /= 6;
 $out[$i] += 4 * $p; # rolled 1-4
 $i++;
 $out[$i] += $p; # rolled 5
 }
 $out[$i] += $p; # $max or higher
 return \@out;
}

Modified Convolution

Modified to include maximum number of hits.

sub convol_max {
 my ($in1, $in2, $max) = @_;
 my @out = (0) x ($max + 1);
 for my $i (0 .. $#$in1) {
 for my $j (0 .. $#$in2) {
 my $k = $i + $j;
 $k = $max if $k > $max;
 $out[$k] += $in1->[$i] * $in2->[$j];
 }
 }
 return \@out;
}

12 Shadowrun Dice
my $max = 12;
my $sr1 = sr_d6($max);
my $sr2 = convol_max($sr1, $sr1, $max); # 1+1=2 dice
my $sr4 = convol_max($sr2, $sr2, $max); # 2+2=4 dice
my $sr8 = convol_max($sr4, $sr4, $max); # 4+4=8 dice
my $sr12 = convol_max($sr8, $sr4, $max); # 8+4=12 dice

This produces another
bell-curveish result, but
it's a bit skewed.

Use of this “doubling”
method reduces the
number of convol calls
from 11 to 4.

Multiple Convolution
The doubling method is nifty, but how do you come up
with the sequence of convolutions?

There's a simple bit-bashing algorithm for that.

sub multi_convol_max {
 my ($x, $n, $max) = @_;
 my $y = $n & 1 ? $x : [1];
 while ($n >>= 1) {
 $x = convol_max($x, $x, $max);
 $y = convol_max($x, $y, $max) if $n & 1;
 }
 return $y;
}

This technique is also used to calculate exponentials in
cryptographic algorithms such as RSA.

Maximum of Several Dice
use List::Util qw(max);
sub highest {
 my ($d1, $d2) = @_;
 my @out = (0) x (max($#$d1, $#$d2) + 1);
 for my $i (0 .. $#$d1) {
 for my $j (0 .. $#$d2) {
 $out[max($i, $j)] += $d1->[$i] * $d2->[$j];
 }
 }
 return \@out;
}

Here's another version of
convolution, modified to find
the maximum. Shown: 1, 2,
and 3 dice, plotted with
style=>'linespoints'

D&D Ability Scores

And the input to highest can be any PMF.

In old-school D&D you roll 3d6 for each of 6 ability
scores. What is the highest score likely to be?

p(18)=3% →
p(11)=4% →

p(14)=21% →

p(13 to 15)=59% →

Part 3:
Spectral Methods

Perl Data Language

PDL is an array-slinging number-crunching tool, similar to
Matlab or GNU Octave. Check out the PDL tutorial, it'll
walk you through some simple image processing.

use PDL;
my $a = sequence(10);
print $a, "\n";

[0 1 2 3 4 5 6 7 8 9]

print $a + 1, "\n";

[1 2 3 4 5 6 7 8 9 10]

print $a ** 2, "\n";

[0 1 4 9 16 25 36 49 64 81]

PDL Dice

Set up the d6 distribution, with extra room for the totals
from rolling 10 dice.

use PDL::NiceSlice;
my $d = zeros(64);
$d(1:6) .= 1/6;
print $d, "\n";

[0 0.16666667 0.16666667 0.16666667
0.16666667 0.16666667 0.16666667 0 0 0 0 0 0
0 0
0 0]

PDL uses .= to copy array contents instead of
just copying an array reference, similar to using
@$x = @$y instead of $x = $y

Just Smile and Nod

use PDL::FFT;
realfft $d;
print $d, "\n";

[1 0.92836346 0.73024915 0.45140225 0.15397992
-0.10016175 -0.26545148 -0.32328101 -0.2845178...

calculate $d ** 10 for 10 dice
my $x = $d(0:31); # real part
my $y = $d(32:63); # imaginary part
my $r = ($x*$x + $y*$y) ** (10 / 2);
my $t = $y->atan2($x,0) * 10;
$x .= $r * cos($t); # modifies $d
$y .= $r * sin($t);

realifft $d;

PDL Plot
use PDL::Graphics::Simple;
line $d;

my $plot = pgswin(out => 'fft.png');
$plot->line($d);

So What?

Why go through all this?
● Brute force with n dice is O(6n) - too slow
● “Ordinary” convolution is O(n2)
● FFT-based convolution is O(n log n)

So if you ever need to roll a
few hundred dice at once...

OK, never mind.

But FFTs are still cool.

That's It

The real purpose has been to
introduce the convolution.

It can be a bit tricky to wrap your
head around.

But it's dead simple to code.

And it's pretty fast.

And it's pretty flexible to handle
variations in your particular
programming problem.

