

Graphs in Perl

Bob Mathews

What kind of graphs?

Mathematically, a graph is
a set of nodes (or vertices)
connected by edges.

Graphs can represent
many things:
● Cities connected by roads
● Borders between states
● Friends in a social network
● Module dependencies

ID

CA
UT

CO

MT

WY

NV

WA

NMAZ

OR

Randomly place some nodes

I'm going to take an immediate left turn and talk about
something not in the mathematical definition: node
locations. Let's pick some at random.

my %graph;
for my $id (1 .. $num_nodes) {
 my $x = $node_rad + rand($im_wid - 2*$node_rad);
 my $y = $node_rad + rand($im_hgt - 2*$node_rad);
 $graph{$id} = { x => $x, y => $y };
}

If you already have a dataset to display as a graph,
maybe it includes coordinates. If it doesn't, picking “good”
coordinates is a tricky problem.

Output graph as .SVG

print $OUT qq[<?xml version="1.0" encoding="UTF-8" ?>\n],
 qq[<svg xmlns="http://www.w3.org/2000/svg"],
 qq[width="$im_wid" height="$im_hgt">\n];
while (my ($id, $node) = each %graph) {
 print $OUT qq[<g id="$id"],
 qq[transform="translate($node->{x},$node->{y})">],
 qq[<circle cx="0" cy="0" r="$node_rad"],
 qq[fill="#fff" stroke="#000" />],
 qq[<text x="0" y="$text_base"],
 qq[font-family="$font_fam" font-size="$font_size"],
 qq[text-anchor="middle">$id</text>],
 qq[</g>\n];
}
print $OUT qq[</svg>\n];

Putting the <circle> and <text> inside a <g> group keeps
them together if we edit the image in a drawing program.

That's ugly

Overlapping nodes
make the diagram
ugly and confusing.

We can solve that
problem...

4

6

10

9

7

25

1 3
8

Check for overlap

Every time we add a node, check to see if it's too
close to the previous ones.

NODE: for my $id (1 .. $num_nodes) {
 my $x = $node_rad + rand($im_wid - 2*$node_rad);
 my $y = $node_rad + rand($im_hgt - 2*$node_rad);
 foreach my $node (values %graph) {
 # Warning: infinite loop?
 redo NODE if ($x - $node->{x})**2
 + ($y - $node->{y})**2 < $min_dist**2;
 }
 $graph{$id} = { x => $x, y => $y };
}

Note that you can get stuck if you try to jam too
many nodes on the page.

That's slow

If you have like a thousand nodes, that will take a long
time. Speed it up with a spatial index!
my $index = Algorithm::SpatialIndex->new(
 strategy => 'QuadTree', storage => 'Memory',
 limit_x_low => 0, limit_x_up => $im_wid,
 limit_y_low => 0, limit_y_up => $im_hgt);
...
 foreach my $node ($index->get_items_in_rect(
 $x - $min_dist, $y - $min_dist,
 $x + $min_dist, $y + $min_dist))
 {
 redo NODE if ($x - $node->[1])**2
 + ($y - $node->[2])**2 < $min_dist**2;
 }
 $index->insert($id, $x, $y);

That's better

10

4

5 1

7

3

9
2

6
8

Now that we have a
reasonable set of
nodes, we can move on
to the next step:

Adding edges

Adding edges

We can just randomly connect nodes...

my @ids = keys %graph;
for (1 .. $num_edges) {
 my $id1 = $ids[rand @ids];
 my $id2 = $ids[rand @ids];
 redo if $id1 eq $id2;
 my $node1 = $graph{$id1} or die;
 my $node2 = $graph{$id2} or die;
 redo if $node1->{edges}{$id2};
 my $dist = sqrt(($node1->{x} - $node2->{x})**2
 + ($node1->{y} - $node2->{y})**2);
 $node1->{edges}{$id2} = $dist;
 $node2->{edges}{$id1} = $dist;
}

Edge weights

Notice that I'm storing the distance between nodes in the
edges hash. This is an example of an “edge weight.”
Other weights might be:

● Length of a road (longer if the road is windy)

● Travel time

● Tolls

● Traffic capacity

The edges hash only allows one edge between a pair of
nodes. In some situations, “parallel edges” are important.
This makes it hard to define a “best” graph data structure.

Output edges to .SVG

my %visited;
while (my ($id1, $node1) = each %graph) {
 $visited{$id1} = 1;
 while (my ($id2, $dist) = each %{$node1->{edges}}) {
 next if $visited{$id2}; # edge already drawn
 my $node2 = $graph{$id2} or die;
 print $OUT qq[<line stroke="#000"],
 qq[x1="$node1->{x}" y1="$node1->{y}"],
 qq[x2="$node2->{x}" y2="$node2->{y}" />\n];
 }
}

Note: we're drawing the edges from center to center.
That will look bad unless you draw the nodes over the top
of them (put the nodes later in the .svg file).

But that's still ugly

2

10
7

6

8

5

1
9

4

3

Just randomly
connecting things
produces a tangle of
edges that cross over
each other.

We want a “planar
embedding” of our
graph. (There may not
be one.) We can try and
build one by hand by
moving things around...

Draggable edges

We can use Inkscape extensions to keep the edges
attached to the nodes when you drag them around.
(They will still display correctly in other SVG viewers.)

print $OUT qq[<?xml version="1.0" encoding="UTF-8" ?>\n],
 qq[<svg xmlns="http://www.w3.org/2000/svg"],
 qq[xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"],
 qq[width="$im_wid" height="$im_hgt">\n];
...
 print $OUT qq[<path stroke="#000"],
 qq[d="M $x1,$y1 $x2,$y2"],
 qq[inkscape:connector-type="polyline"],
 qq[inkscape:connection-start="#$id1"],
 qq[inkscape:connection-end="#$id2" />\n];

Edges now need to go after the nodes in the .svg file,
so we'll have to calculate endpoints that don't overlap.

Calculate endpoints

Calculating the endpoints is a fairly simple exercise.

Close your eyes if you're allergic to math.

my $x1 = $node1->{x}; my $y1 = $node1->{y};
my $x2 = $node2->{x}; my $y2 = $node2->{y};
my $dx = $x2 - $x1; my $dy = $y2 - $y1;
my $d = $node_rad / sqrt($dx * $dx + $dy * $dy);
$dx *= $d; $dy *= $d;
$x1 += $dx; $y1 += $dy;
$x2 -= $dx; $y2 -= $dy;

That's fun

Now you can open up
the graph in Inkscape
and try to drag nodes
around until the edges
don't cross.

This rapidly gets
frustrating for large
graphs. It's easier if we
can just pick “good”
edges in the first place.

8

10

2
7

1

5
9

3

4

6

Generate non-crossing edges

Math::Geometry::Delaunay
calculates a nice-looking
triangulation with a maximal
set of non-crossing edges.

A fully triangulated graph is
quite dense with edges, so
you may want to choose
only some of them, at
random.

6

3

8

9

10

2

7

4

1

5

That's not it either

We picked some
random edges, but
now the graph isn't
connected. There are 3
“components.”

How can we tell if the
graph is connected (has
only one component)?

TIMTOWTDI

There is more than one way to do it.

I'm using a “disjoint set” method:

● Start with each node in a separate component

● Add one edge at a time:

● If the ends are in the same component, do nothing

● If they aren't, merge the two components. Choose one
node as the “representative” of the new component.

We need to be able to find the representative for any
node, BUT we don't want to spend a lot of time
re-labelling nodes with a new rep when we merge.

3

9 2

4

5
2

6

8

10

1

1

Merging components

In this example, we're adding an
edge between nodes 1 and 2. The
red and blue components will be
merged. Pick 1 as the new
representative and set rep[2] = 1...

... or pick 2 and set rep[1] = 2.
Don't change any other reps!

Counting components

Here's the Perl code for the main loop:
my $num_components = keys %graph;
my %reps;
while (my ($id1, $node1) = each %graph) {
 my $rep1 = find_rep($id1, \%reps);
 while (my ($id2, $dist) = each %{$node1->{edges}}) {
 my $rep2 = find_rep($id2, \%reps);
 if ($rep1 ne $rep2) {
 $reps{$rep2} = $rep1; # merge components
 --$num_components;
 }
 }
}

Arbitrarily choose $rep1 as the new rep. If the graph is
really huge, “union by rank” is better (choose the rep with
the shortest chain of underlings).

Find representative of a node

Avoid doing redundant work by flattening chains of old
representatives (“path compression”).

sub find_rep {
 my ($id, $reps) = @_;
 my $rep = $id;
 # find representative
 while (defined(my $temp = $reps->{$rep})) {
 $rep = $temp;
 }
 # path compression
 while (defined(my $temp = $reps->{$id})) {
 $reps->{$id} = $rep;
 $id = $temp;
 }
 return $rep;
}

Spanning tree

6

10

1

3

4

9

7

5 8

2
If you only add edges
that cause a merge, you
get a graph with no
cycles.

There's no way to loop
back where you started
from without recrossing
an edge.

This is called a “tree” or “acyclic graph.”

Hey, hey!

8

5
3

10

1

6 4

92

7

If you sort all the
edges by weight
first, you get a
“minimum
spanning tree.”

This is known as
Kruskal's
Algorithm.

An MST is a neat and tidy little graph. Every node is
connected the “best” way. To make things a bit more
interesting, add a few random edges (from Delaunay).

Where were we going with this?

1
15

7

6 5

2

9

4
8

10

17
16

12

14

13

3

11

Now that we can build
graphs, one obvious thing
to do is find paths from one
node to another.

How would we get from
node 5 to 8?

Easy to solve by eye
in a graph this small.

Dijkstra's shortest path

The classic algorithm from the guy with the weird
name (“Dijk” sounds like “dike”):

Put the start node in the active list with distance 0
● Get the active node with the shortest distance
● If that's the end node, we're done
● For each edge attached to this node,

– New distance is node distance plus edge distance

– New node is the one on the other end of the edge

– Add new node to active with new distance, unless
new node's distance is already shorter

Dijkstra's shortest path code

my $pq = Array::Heap::ModifiablePriorityQueue->new();
$pq->add($start_id, 0);
$graph{$start_id}{dist} = 0;
while (my $id = $pq->get()) {
 last if $id eq $end_id;
 my $node = $graph{$id} or die;
 while (my ($id2, $len) = each %{$node->{edges}}) {
 my $node2 = $graph{$id2} or die;
 my $dist = $node->{dist} + $len;
 if (!exists($node2->{dist})
 || $dist < $node2->{dist})
 {
 $node2->{dist} = $dist;
 $node2->{path} = $id;
 $pq->add($id2, $dist);
 }
 }
}

Extracting the path

The shortest path is left in the graph structure.
That's memory-efficient while the algorithm is
running, but inconvenient afterwards. To extract
the shortest path into an array:

my $id = $end_id;
my @path;
while (defined $id) {
 unshift @path, $id;
 $id = $graph{$id}{path};
}

Dijkstra's results

8

13

11

16

1

7

5

12

4

3

17

2

10

15

9

14

6

The chosen path is
5 - 3 - 10 - 1 - 4 - 8

Explored almost the
entire graph (colored
edges) before finding
the solution.

Dijkstra's algorithm
knows nothing about
node locations, but often
that's useful information.

A* algorithm

It turns out that there's an easy way to add geometric
information to Dijkstra's algorithm. We only have to
change ONE LINE.

$pq->add($id2, $dist + dist($node2, $graph{$end_id}));

When adding $node2 to the active queue, add an
estimate of the remaining distance to the end point.
(In this case, use the straight-line distance, whether or
not an edge exists between those two nodes.)

The estimate must be optimistic, meaning that it can't be
greater than the actual distance to the end.

A* results

14

2

4

6

16

1

13

11

10

5

9

7
15

12
17

83

Same solution, but it
avoided most nodes that
are obviously in the
wrong direction.

(Nodes 16 and 17 looked
good, but turned out to
be a dead end.)

Very important speedup
in many real-world
path-finding problems.

Checkpoint

These path algorithms are the most important
topic I'm going to talk about today.

If you followed that, great!

If you're feeling a bit lost, yell at me!

Things are about to get a bit weird.

Thinking ahead

The A* algorithm has no overall knowledge of the
graph structure to steer it.

If you could precompute some information about
the graph (before knowing the start and end
nodes), what would be useful?

You can compute paths between all pairs of
nodes with the Floyd-Warshall algorithm, but that
might take a lot of memory to store.

There are other features of the graph that might
be useful to know, such as...

Cut vertices

1
15

7

6 5

2

9

4
8

10

17
16

12

14

13

3

11
Can't get from 5 to 8 without
visiting node 10.

Removing 10 would break
the graph in two pieces.

Such nodes are called
“cut vertices” or
“articulation points.”

Blocks

1
15

7

6 5

2

9

4
8

10

17
16

12

14

13

3

11

The cut vertices divide a
graph into “blocks” or
“biconnected components.”

There are at least two
separate paths between
any two nodes in a block
(with at least 3 nodes).

Each cut vertex is part of two
or more blocks.

The block outlines were found with Math::ConvexHull

Block-cut vertex tree

1
15

7

6 5

2

9

4
8

10

17
16

12

14

13

3

11

F

C

4

1
15

E
B

G

16

A

10

D

Build a new graph by replacing each block with a node.

The result is a tree. There's only one path between any
two nodes. Routing is easy!

Block finding

The algorithm for finding cut vertices and blocks
isn't too complicated. Basically,
● Pick a starting node and explore the graph, but

don't retrace your steps.
● If you get back to a previously explored node,

you know you're wandering around in a block.
● If you can't get back to a previous node, you've

crossed a cut vertex.

Block finding code

sub find_lowpoint {
 my ($parent, $id, $depth) = @_;
 my $node = $graph{$id} or die;
 $node->{depth} = $depth;
 my $low = $depth;
 for my $child (keys %{$node->{edges}}) {
 next if $child eq $parent;
 my $cnode = $graph{$child} or die;
 if (defined(my $cdepth = $cnode->{depth})) {
 $low = $cdepth if $cdepth < $low;
 }
 else {
 my $clow = find_lowpoint($id, $child, $depth + 1);
 if ($clow < $depth) {
 $low = $clow if $clow < $low;
 }
 else { # found a new block
 build_block($id, $child);
 }
 }
 }
 return $low;
}

What does that get us?

Can use the block tree for “long-range” guidance.

BUT, road networks are mostly biconnected, so
you get one big component. Not too useful.

In a computer network, a cut vertex is a single
point of failure, so they tend to get engineered out
of the network core. (Might use this type of
algorithm to find them.)

In any case, simplifying a graph by grouping
nodes together is often a useful idea.

That's all

Graphs are useful in a wide variety of situations.

But there are so many variations that it's hard to
keep track of them all.

No do-everything graph module on CPAN.

There are lots of nifty algorithms
that do things that might be useful.

Everyone should know Dijkstra
and A*!

